PROJECT CONTROLS EXPO, AUSTRALIA – 26TH NOVEMBER 2019

MELBOURNE CRICKET GROUND, MELBOURNE

Uncovering the Unknown Knowns

John Paterson

Director, J D Paterson & Associates

J D Paterson & Associates

CONSULTING CIVIL CONSTRUCTION ENGINEERS

WHY?

• The Problem:

Engineering failures resulting in fatalities and huge financial loss, can be traced back to the lack of scrutiny in uncovering unknown knowns.

• The Solution:

By investing time and energy in preventative treatments we can return a 17:1 BCR compared with the impact of adverse events.

TODAY'S OUTLINE

- Areas where most risks occur.
- Tools, Methods and Processes to investigate, test and probe the future
- Leadership The work managers need to do to successfully invest in treatment solutions.

UNCOVERING THE UNKNOWN KNOWNS

- Donald Rumsfeld
 - Known Knowns
 - Known Unknowns
 - Unknown Unknowns
- Unknown Known
 - An issue known to some stakeholders but overlooked by the Project Group

Risk Types to Project Budget

Expected

	Risk Types				
Level of Control v	Known	Known Unknown	Unknown Known	Unknown Unknown	
Full Control					
Some Control					
Can Get Some Control					
No Control					

	Management Reserve			
Systemic Risks	Cost as Result of failure to Invest			
ted Pre-emptive Mitigation Actions Residual Risk	Contingent Risk Cost Estimate	Contingency		
Estimate Uncertainty	Inherent Risk Cost Estimate		Project	
Implemented Preventative Actions Cost of thorough investigation, Models, Trials and Prototypes		Basic Cost Estimate	Budget \$	
High Probability Risk				

SYSTEMIC RISKS

SYSTEMIC RISKS ARE UNKNOWN KNOWNS - RISKS THAT MANAGEMENT KNOWS BUT CHOSES TO IGNORE

- Scope Definition Refer CII PDRI
- Team Development
- First of a Kind (FoaK)
- Project Controls
- Likelihood of Occurrence = 100%

SYSTEMIC RISK - PARAMETRIC MODEL

PROJECT RISK QUANTIFICATION

A Practitioner's Guide to Realistic Cost and Schedule Risk Management

RISK DRIVER	Enter Parameter (a)	COEFFICIENT (b)	axb		
Constant					
Scope	3				
Planning	4				
ENGINEERING	3				
SCOPE DEFINITION	3.3	9.8	32.3		
New Technology	5%	0.12	0.60		
PROCESS SEVERITY	3	1.0	3.0		
COMPLEXITY	5	1.2	6.0		
SUBTOTAL BASE (prior to adjustments)					
Adjustments					
Team Development	Poor	(assume complex)	+6		
Project Control	Poor	(assume complex)	+6		
Estimate Basis	Fair		0		
Equipment	15%		+2		
Fixed Price	<10%		0		
TOTAL BASE (prior to basis adjustment; rounded to whole number)					
Bias	Low		+5		
	Systemic Cost Con	TINGENCY			
Mean	25 + 5		30%		
<i>p</i> 10	25 x (-0.5) + 5		-7%		
p70 (indicated funding)	25 x 1.5 + 5		43%		
p90	25 x 2.6 + 5		72%		

Table 11.16: Case Example Parametric Model Applications for Cost Growth (incorporate this as the impact of systemic risk in the expected value model)

H:\Documents\Benchmarking\PDRI\IR268_2pdri-infrastructure_v4 LXRA Pkg1 McKinnon Centre 180718.xlsm

PDRI 1 - Summary Results

Project:	
McKinnon Rd & Centre Rd	
Project Manager:	
Brendan Pauwels	
Facilitator:	THE WALLING
John Paterson	
Status of Project:	135.04.40
Complete	
Date:	Interview Interview
Thursday, 19 July 2018	

Section	Description	PDRI 1 Score	Min Score	Max Score	Def ¹ (%)
1	BASIS OF PROJECT DECISION	155	26	437	69%
	BASIS OF DESIGN	112	23	293	67%
III	EXECUTION APPROACH	50	21	270	88%
	Total	317	70	1,000	73%
	PDRI TOTAL MAXIMUM SCORE Normalized Score:	<u>= 1000</u>			317

PROJECT SPECIFIC RISKS ON MAJOR CIVIL PROJECTS

- Design
- Access, Approvals & Availability
- Relocating Utility Services
- Unsuitable Conditions
- Procurement
- Traffic Management
- Out of Sequence Work

INSUFFICIENT INVESTMENT IN DESIGN

- Collapse of West Gate Bridge
- Bolte Bridge spalling concrete into Yarra River
- Failure at 24hours of Murrin Murrin Valves
- First of a Kind (FoaK) CTD Skyrail over Live Rail

WEST GATE BRIDGE

WEST GATE BRIDGE

11/08/2013 15:11

BOLTE BRIDGE OVER YARRA RIVER

21/07/2013 14:16

CAULFIELD TO DANDENONG - SKYRAIL

ACCESS & APPROVAL TOOLS

- Engage a diverse range of stakeholders
 - Each will have different requirements and expectations

UTILITY SERVICES

- Soil nail disasters
 - FOC punctured near Toorak Rd Underpass
 - Sewer filled with grout near Coonans Rd on Tullamarine
 Freeway
- Near miss survey star picket driven near 2200V cable near Flemington Bridge

PROCUREMENT

INVESTIGATIVE TOOLS

- Divergent / Convergent Thinking Model
- Engaging a diverse range of Stakeholders
- Review Lessons Learned and interview people
- Use techniques of de Bono and Rumsfeld
- Use John Hollmann's Parametric model to evaluate systemic risks

THINKING AND ACTION TOOLS

- Use de Bono's
 - Red Hat for complex projects
 - Grey sneakers to collect information
 - Brown brogues to do the hard work
 - Value medals for valuing treatments
- Use Rumsfeld's
 - What else? and What's missing?
- Use "Sabotage" Phase to list more treatments

PRACTICAL METHODS

- Make Scale Models
- Test function with simple tests
- Engage hands-on experienced persons to train and advise
- Intensify QA in high risk areas
- Provide pre-emptive mitigation plans and resources

Photo: Frank Winston Monash University

Design Reuse trial

Digital Models to Uncover Unknown Knowns

Mentone Station – Structural Envelope

Mentone Station – St. Albans option

Mentone Station – St. Albans option

Mentone Station – St. Albans option

Mentone Station – Ginifer comparison

Cheltenham Station – Structural Envelope

Cheltenham Station – Structural Envelope

Cheltenham Station – Track Arrangement

Cheltenham Station – Bentleigh Option

Cheltenham Station – McKinnon Option

Cheltenham Station – Ormond Option

EADES COLORADO, USA

PROJECT PROCESSES

- Vigorous investigation of early Warning Signs
- Reward issue Identification
- Define early Standards of Conduct, Operating procedures and Quality of outputs
- Use CII Disputes Potential Index
- Use Dispute Resolution Boards

I-35 WEST BRIDGE, MINNEAPOLIS, USA

I-35 WEST BRIDGE, MINNEAPOLIS, USA

ESSO LONGFORD, VIC.

MALAHIDE DESIGN – HYDRAULIC JUMP 20M EAST

MALAHIDE ACTUAL – HYDRAULIC JUMP WEST OF BRIDGE

CII – PROJECT DEFINITION RATING INDEX

Allows the project planning team to quantify, rate and assess the maturity level of scope definition on projects prior to detailed design and construction.

Section 1 – Basis of Project Decision

- Project Strategy
- Owner/Operator Philosophies
- Project Funding and Timing
- Project Requirements
- Value Analysis

Section 2 – Basis of Design

- Site Information
- Location and Geometry
- Associated Structures and Equipment
- Project Design Parameters

Section 3 – Execution Approach

- Land Acquisition Strategy
- Procurement Strategy
- Project Control
- Project Execution Plan

CII – DISPUTE POTENTIAL INDEX

- Analyses 8 Variables in response to 21 questions
 - Owner's Management and Organisation
 - Contractor's Management and Organisation
 - Project Complexity
 - Project Size
 - Financial Planning
 - Project Scope Definition
 - Risk Allocation
 - Contract Obligations

DISPUTE RESOLUTION BOARDS

- A DRB can be one or three persons
- Role is early Identification of issues and consequences
- Discussion with Parties in such a way they can understand

and deal with the issues

• Excellent Track Record

LEADERSHIP IN RISK MANAGEMENT

Make Decisions

- Defining the ranges for Likelihood of Occurrence, Severity of Consequence & Risk Level
- Investing in thorough investigation, models & trials

Select & Develop People

- Improving knowledge, skills and attitude to risk

• Communicate

- So that risk treaters understand what to do & why
- Learn from doing, training, simulation, practice

Motivate

- Inspire, encourage, impel people to vigorously implement required action

Risk Types to Project Budget

	Risk Types					Managamart		
Level of						Reserve		
Control	Known	Known	Unknown	Unknown				
V		OIIKIIOWII	KIIOWII	Onknown		Cost as Result		
Eull					Systemic Risks	of failure to		
Control						Invest		
						Contingent		
Some					Expected Pre-emptive Mitigation Actions	Risk Cost		
Control					Residual Risk	Estimate	Contingency	
				Ectimata Uncortaintu	Inherent Risk		_	
Can Get					Estimate Uncertainty	Cost Estimate		Project
Some					Implemented Preventative Actions			Budget
Control					Cost of thorough investigation,		Basic	\$
					Models, Trials and Prototypes		Cost	
No							Estimate	
Control								
					High Probability Risk			

SUMMARY

- Invest
- Treatments don't have to cost
- Engage with a diverse range of stakeholders
- Vigorously implement treatments
- Hold people accountable

GOOD LUCK ON YOUR PROJECTS

